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A B S T R A C T

Digital elevation models (DEMs) derived from remote sensing data provide a valuable and consistent data source
for mapping coastal flooding at local and global scales. Mapping of flood risk requires quantification of the error
in DEM elevations and its effect on delineation of flood zones. The ASTER, SRTM, ALOS, and TanDEM-X (TDX)
DEMs for the island of Hispaniola were examined by comparing them with GPS and LiDAR measurements. The
comparisons were based on a series of error measures including root mean square error (RMSE) and absolute
error at 90% quantile (LE90). When compared with> 2000 GPS measurements with elevations below 7m,
RMSE and LE90 values for ASTER, SRTM, ALOS, TDX DEMs were 8.44 and 14.29, 3.82 and 5.85, 2.08 and 3.64,
and 1.74 and 3.20m, respectively. In contrast, RMSE and LE90 values for the same DEMs were 4.24 and 6.70,
4.81 and 7.16, 4.91 and 6.82, and 2.27 and 3.66m when compared to DEMs from 150 km2 LiDAR data, which
included elevations as high as 20m. The expanded area with LiDAR coverage included additional types of land
surface, resulting in differences in error measures. Comparison of RMSEs indicated that the filtering of TDX
DEMs using four methods improved the accuracy of the estimates of ground elevation by 20–43%. DTMs gen-
erated by interpolating the ground pixels from a progressive morphological filter, using an empirical Bayesian
kriging method, produced an RMSE of 1.06m and LE90 of 1.73m when compared to GPS measurements, and an
RMSE of 1.30m and LE90 of 2.02m when compared to LiDAR data. Differences in inundation areas based on
TDX and LiDAR DTMs were between −13% and−4% for scenarios of 3, 5, 10, and 15m water level rise, a much
narrower range than inundation differences between ASTER, SRTM, ALOS and LiDAR. The TDX DEMs deliver
high resolution global DEMs with unprecedented elevation accuracy, hence, it is recommended for mapping
coastal flood risk zones on a global scale, as well as at a local scale in developing countries where data with
higher accuracy are unavailable.

1. Introduction

Coastal zones are highly sought-after locations for residential,
commercial, or tourism development because of an abundance of
available resources and trading opportunities (McGranahan et al.,
2007). Unfortunately, many coastal areas are characterized by low-re-
lief topography only a few meters above sea level, and are constantly
subjected to the impacts of wind, waves, currents, and tides (Komar,
1998). The concentration of population and economic activities in the

coastal zone exposes residents and infrastructure to an assortment of
hazards, particularly flooding from storm surge in combination with
high tides and overbank river flows. Sea level rise and variation in
storm activity due to climatic change (Knutson et al., 2010; Nicholls
et al., 2011) will increase the risk of flooding, threatening coastal re-
sidents. Therefore, it is critical to map areas likely to be flooded by
storm surge and sea level rise, in order to inform policy-makers and the
public about potential impacts on population, property, and infra-
structure.
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The quality of mapping areas vulnerable to flooding relies upon the
accuracy of a digital terrain model (DTM), which is often derived from
airborne and satellite remote sensing. Methods employed to generate
elevation data through remote sensing include optical stereo matching,
radar interferometry, and light detection and ranging (LiDAR) (Takaku
et al., 2014). DTMs with root-mean-square error (RMSE) as low as
0.10–0.15m can be derived from airborne LiDAR remote sensing (Shan
and Toth, 2008), and are often utilized to map coastal and freshwater
flooding risk in developed countries. For example, Zhang (2011) and
Zhang et al. (2011) used LiDAR DTMs to map potentially flooded areas,
population, and property caused by sea level rise in South Florida in the
United States (U.S.). However, LiDAR data are rarely available in de-
veloping countries because of the prohibitive cost and technical barriers
to data collection and processing. Additionally, the development of
coastal zones occurs on a global scale, thus a global DTM is needed to
assess the cumulative effect of human activity on coastal flooding
(McGranahan et al., 2007). Satellite based technology such as synthetic
aperture radar (SAR) and stereo analysis of overlapping optical imagery
offers a viable solution for collecting the elevations of the Earth's sur-
face at a global scale.

Launched in 2000 by the U.S. National Aeronautics and Space
Administration (NASA), the Shuttle Radar Topography Mission (SRTM)
generated the first free global digital elevation model (DEM) for the
lands between latitudes 60° N and 56°S (Farr et al., 2007). In 2009, the
Ministry of Economy, Trade, and Industry (METI) of Japan and NASA
released the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global DEM for lands between 83°N and 83°S
(Abrams et al., 2010; Tachikawa et al., 2011a), extending the coverage
beyond that of SRTM. These two DEMs, especially the former, have
been used to map potential flood areas on a global scale, and to
document the population impacted by increased flooding due to sea
level rise (Hinkel et al., 2014; McGranahan et al., 2007; Neumann et al.,
2015). However, by comparing the areas of impacted land and popu-
lation derived from LiDAR and SRTM data along the U.S. Coast, Kulp
and Strauss (2016) demonstrated that errors in SRTM in low-lying areas
resulted in a large underestimate of coastal vulnerability to sea level
rise inundation. For example, for a flood level 2–3m above the mean
higher high water level, SRTM data under-predicted the inundated land
areas and population by 50% and 60%, respectively.

Several studies have used SRTM and ASTER DEMs to depict the
extent of inundation caused by sea level rise on a local scale
(Demirkesen et al., 2008, 2007; Ho et al., 2010). However, sensitivity
analysis of flood risk using LiDAR, SRTM, and ASTER DEMs for Lagos
City, Nigeria showed that the flooded coastal areas estimated by ASTER
and SRTM data were 3–10 times less than the flooded area from LiDAR
(van de Sande et al., 2012). With the recent release of two global DEMs,
the TanDEM-X (TDX) DEM by the German Aerospace Center (DLR) and
the Advanced Land Observing Satellite (ALOS) World 3D DEM by the
Japan Aerospace Exploration Agency (JAXA), more data are available
for mapping the extent of flooding. The TDX mission specified the ab-
solute vertical error at the 90% quantile (LE90) of the TDX DEM to be
10m. However, a comparison of the TDX DEM with Ice, Cloud, and
land Elevation Satellite (ICESat) laser altimeter measurements in areas
not covered by ice or forest generated an LE90 error of only 0.88m,
which was much lower than the error specified by the mission (Rizzoli
et al., 2017). Boulton and Stokes (2018) demonstrated that the ALOS
DEM performance in geomorphological analysis of river networks
within mountain landscapes was superior to those derived from SRTM,
ASTER, or TDX DEMs. Recently, Gesch (2018) compared the vertical
errors of SRTM, ASTER, ALOS, and TDX DEMs and examined their ef-
fect on mapping coastal inundation caused by sea level rise at seventeen
sites along the U.S. coasts. However, to derive a general conclusion,
more studies on the performance of these DEMs in depicting coastal
inundation zones in different geographic areas need to be conducted.
The questions of what effect DEM errors have on the delineation of
flood areas, and which DEM data set is the best option for quantitative

analysis of flood risk caused by storm surge and sea level rise must be
answered before TDX or ALOS DEMs are used to map coastal flood risk.
Because high-accuracy LiDAR data are only available for limited coastal
areas of Hispaniola, composed of Haiti and the Dominican Republic, the
island is an ideal location to test the application of global DEMs for
mapping the coastal flood zone. The objectives of this paper are
therefore to (1) estimate the accuracy of SRTM, ASTER, ALOS, and TDX
DEMs in low-lying coastal areas of Hispaniola by comparing DEMs with
GPS and LiDAR measurements, (2) examine whether filtering methods
for removal of buildings and trees can improve the generation of DTMs
from TDX DEMs, and (3) assess the effect of elevation errors of DEMs on
mapping coastal inundation areas, enabling the substitution of TDX
DTMs for LiDAR DTMs in modeling coastal inundation to be evaluated.

2. Study area and data

2.1. Study area

Hispaniola is the second largest island in the Caribbean with an area
of approximately 75,000 km2 and a population of 22 million (United
Nations, 2017). The topography is dominated by a series of mountains
and intervening valleys oriented in the NW- SE direction, and elevations
range from lake bottoms 40m below sea level to mountains> 3000m
high (Rodriguez and Barba, 2009; Wilson et al., 2001). The island ex-
periences frequent tropical cyclones due to its central location in the
path of hurricanes that originate from West Africa and reach the Car-
ibbean Sea. Historically, hurricanes have generated high storm surge
and large waves along the coast of Hispaniola. Low-lying coastal areas
such as Port-au-Prince, Gonaives, Cap-Haitien, Matancitas, Bebedero,
San Pedro De Macoris, and Azua are vulnerable to storm surge flooding
(Fig. 1). For example, during Hurricane David (1979) a 6m storm tide
(surge+wave setup+wave runup+ tide) inundated most coastal
highways from Santo Domingo to Las Americas International Airport,
including the airport itself, threatening the lives of coastal residents and
tourists (personal communication, Miguel Campusao, Oficina Nacional
de Meteorología, The Dominican Republic).

2.2. SRTM DEM

NASA's void-filled SRTM DEM, with a resolution of 1 arc-second
(~30m at the Equator), was utilized in this study. SRTM DEMs are 16
bit signed integers, referenced horizontally to the World Geodetic
System 1984 (WGS84) and vertically to the Earth Gravitational Model
1996 (EGM96). It is noteworthy that the C-band SAR was employed by
the SRTM sensor to measure the height of ground and non-ground
features across the Earth's surface. Since C-band wave cannot penetrate
dense vegetation or buildings, SRTM DEMs represent elevations be-
tween the bare ground and canopy top. The accuracy of the 30m SRTM
DEM is specified as< 16m absolute vertical elevation error and<10
m relative vertical elevation error at the 90% confidence level (Farr
et al., 2007). By comparing SRTM elevations with GPS measurements,
Rodriguez et al. (2006) demonstrated that absolute elevation errors of
SRTM at the 90% quantile ranged from 5.6m to 9.0 m.

2.3. ASTER DEM

The ASTER DEM version 2 is a global one arc-second elevation
dataset that was released in October 2011 by METI, Japan and NASA.
The ASTER DEM was generated using optical imagery of 15m resolu-
tion collected in space with the METI ASTER sensor mounted on NASA's
Terra satellite (Abrams et al., 2010). Construction of the ASTER DEM
relies on the correlation of stereoscopic image pairs (Wolf et al., 2000).
Compared to ASTER DEM version 1, released in June 2009, the version
2 DEM improved spatial resolution, increased horizontal and vertical
accuracy, and provided better water body coverage and detection by
using 260,000 additional stereo-pairs (Tachikawa et al., 2011a). The
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elevations of ASTER DEMs are 16 bit signed integers, referenced hor-
izontally to WGS84 and vertically to EGM96. During an observation
period of more than seven years (2000–2007), about 1,260,000 scenes
of stereoscopic DEM data sets, each covering an area of 60 km×60 km,
were collected, with the topography of most regions being sampled
several times. The RMSE of ASTER elevations was estimated to be
8.68m (Tachikawa et al., 2011b).

2.4. ALOS DEM

The ALOS was launched by JAXA in collaboration with commercial
partners NTT DATA Corp. and the Remote Sensing Technology Centre
of Japan (RESTEC) in 2013 (Tadono et al., 2014; Takaku et al., 2014). A
Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM),
an optical sensor on board of ALOS, was operated from 2006 to 2011,
using PRISM stereo image pairs with a resolution of 2.5 m to generate a
global DEM between latitudes 80° N and 80° S (Takaku and Tadono,
2009). NTT DATA and RESTEC have distributed fine resolution DEMs
with an approximate 5m pixel size commercially. JAXA generated
1°× 1° tiles of 1 arc sec (~30m) DEMs by resampling the 5m ALOS
DEMs, and released these products to the public in 2016 (Tadono et al.,
2016). JAXA upgraded ALOS DEM to version 2.1 in 2017 (http://www.
eorc.jaxa.jp/ALOS/en/aw3d30/index.htm, accessed 3 November
2018), filling in the elevations of water, low correlation, cloud, and
snow pixels (Takaku and Tadono, 2017). Average and median eleva-
tions were produced for 30m ALOS DEMs by averaging or selecting the
median of the elevations of 49 (7× 7) pixels of 5m DEM elevations.
The average DEM elevations used in this study are 16 bit signed in-
tegers, referenced to the WGS84 horizontal datum and EGM96 vertical

datum. Mean, standard deviation, and RMSE of ALOS DEMs versus
5121 control points distributed across 127 image tiles were −0.44m,
4.38m, 4.40m, respectively (Takaku et al., 2016).

2.5. TDX DEM

The DLR, in partnership with private industry, launched the TDX
DEM mission from 2010 to 2015 to generate a global DEM between
latitudes 90° N and 90° S (Rizzoli et al., 2017; Wessel, 2016; Zink et al.,
2014). The TDX twin X-band SAR sensors operated in a bistatic mode,
utilizing a strip-map mode with a resolution of 3m, a swath width of
30 km, and slant angles of 30°–50° to derive elevations of the Earth's
surface (Gruber et al., 2012; Krieger et al., 2007). The pixel spacing of
the TDX DEM is 0.4 arc sec (about 12m) in the latitudinal direction,
and varies in the longitudinal direction from 0.4 arc sec at the equator
to 4 arc sec above 85° N/S latitude (Wessel, 2016). The 32 bit float
elevations of the TDX DEM were generated by averaging all SAR height
values falling in a given pixel, using weights based on the standard
deviations of the errors for these heights. The horizontal datum for the
DEM is WGS84-G1150 and the heights of the DEM are ellipsoid heights
referenced to WGS84-G1150 (Wessel, 2016). Comparison of TDX DEM
elevations with kinematic GPS data derived by driving vehicles across
all continents and elevations of GPS survey benchmarks covering the
entire U.S indicated that LE90s were 1.9m for kinematic GPS and 2.0m
for GPS benchmarks, respectively (Wessel et al., 2018). Fifteen 1°× 1°
TDX DEM tiles that were collected from 2011 to 2014 cover the island
of Hispaniola.

Fig. 1. Hispaniola and locations of GPS and LiDAR surveys.
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2.6. LiDAR data

In order to map the damage and fault movement due to a magnitude
7.0 earthquake that impacted Haiti in January 2010, LiDAR data were
collected and processed by Rochester Institute of Technology under
sub-contract to ImageCat Inc. (Van Aardt et al., 2011) (Fig. 1). The data
collection effort was sponsored by the Global Facility for Disaster Re-
duction and Recovery hosted at The World Bank. The LiDAR surveys
covered an 838 km2 area around Port-au-Prince, Haiti, with a mea-
surement density of 3.4 points per square meter. Three dimensional
LiDAR data, reported in the horizontal WGS84 Universal Transverse
Mercator (UTM) coordinate system and based on the EGM96 vertical
datum, were distributed in binary LASer (LAS) format (https://www.
asprs.org/divisions-committees/lidar-division/laser-las-file-format-
exchange-activities, accessed 20 January 2019) and were downloaded
from Open Topography (www.opentopography.org, accessed 3 No-
vember 2018). In the downloaded LAS dataset, the ground and non-
ground LiDAR points were labeled with different class codes.

2.7. Ground GPS surveys

Real Time Kinematic Global Positioning System (RTK GPS) surveys
were conducted in April 2016 at three sites within the Dominican
Republic: Pedernales, Samana, and Sanchez, (Fig. 1). The survey points
were determined using a systematic, staggered-start point sampling
method (Franzen et al., 2011) within the square boundary of an SRTM
grid cell to capture elevation changes within the cell. First, the sample
locations started at the upper left vertex of the square grid cell and were
planned at 0, 10, 20, and 30m using a sample interval of 10m along the
x direction, thereby forming the first row of samples. Next, the y values
of second row samples were derived by subtracting the y coordinates of
first row samples by 5m, and the sample locations were planned at 5,
15, and 25m by alternating the starting position at half the sample
interval along the x direction. Third, in addition to decreasing y values
by 5m along the y direction for each row, the third and fourth rows of x
coordinates were planned in the same way as the first and second rows,
respectively. This process was repeated until the y coordinates of the
samples reached the bottom of the square boundary of the SRTM grid
cell. The GPS data were collected by surveyors at locations within
10 cm circles around the predefined sampling points using rod-mounted
RTK GPS rovers. If a sample point happened to be in an area with poor
GPS reception during the survey, a point closest to the sample location
was taken and labeled appropriately. This method was continued until
all points at each site were completed, or until location conditions
(trees, buildings, etc.) prevented further data collection.

For each sampling site, two control points were established for
differential GPS correction, and simultaneous static GPS observations
were recorded for a minimum of 8 h during the course of the surveys.
The static GPS records for control points were processed utilizing the
National Geodetic Survey Online Positioning User Service (OPUS) that
created baselines from Continuously Operating Reference Stations
(CORS). In total, 2287 GPS points were surveyed at three sites with
horizontal coordinates in the WGS84 UTM Zone 19N system, and el-
lipsoidal heights relative to the International Terrestrial Reference
Frame (ITRF) 2008 vertical datum.

3. Methods

3.1. Datum conversion

In order to make a consistent comparison of LiDAR and GPS surveys
with SRTM, ASTER, ALOS, and TDX DEMs, all measurements must refer
to the same horizontal coordinate system and vertical datum. Since
there is no reliable local datum available for Hispaniola (Mugnier
2005), all data were converted to the WGS84 UTM Zone 19N co-
ordinate system with a vertical datum of EGM2008 (Pavlis et al., 2012)

in units of meters using the National Geospatial Agency (NGA) Con-
version tool (http://earth-info.nga.mil/GandG/wgs84/gravitymod/
egm2008/egm08_wgs84.html, accessed 3 November 2018) and the
ArcGIS Projection tool. For SRTM, ASTER, and ALOS DEMs, the hor-
izontal and vertical coordinates of each grid cell referenced to WGS84
and EGM96, respectively, were first output as a text file. Elevations
were then transformed to ellipsoid heights relative to WGS84, and to
heights with respect to EGM2008 using the NGA Conversion tool. Fi-
nally, the EGM2008 heights in ASCII format were converted to raster in
ArcGIS and projected to the UTM coordinate system. TDX DEMs with
horizontal coordinates and ellipsoid heights relative to WGS84 were
converted to the UTM coordinate system with a vertical datum of
EGM2008 through steps 2 and 3 outlined above. For LiDAR data in the
UTM coordinate system with a vertical EGM96 datum, the 12m and
30m digital surface models (DSMs) were first generated by simply
averaging first return points in a grid cell using the LAS Dataset to
Raster tool in ArcGIS. This reduced computation time, which was cri-
tical because the averaging process involved about 2.8 billion points
(about 3.4 points per square meters), while guaranteeing the quality of
DSMs. The 12m and 30m DTMs were generated by inverse distance
weighted interpolation of ground LiDAR points to compute the eleva-
tions of grid cells occupied by buildings and vegetation. The DSMs and
DTMs were then transformed to the WGS84 coordinate system in
ArcGIS and converted to the UTM coordinate system with the EGM2008
vertical datum, following the same procedure as used to transform
SRTM DEMs. The ellipsoid heights of the GPS measurements in re-
ference to ITRF 2008 were converted to EGM2008 heights using the
NGA Conversion tool for transforming WGS84 ellipsoid heights to
EGM2008 heights, because the ITRF2008 and WGS84 ellipsoid heights
coincided to approximately the 10 cm level (ITRF, 2013).

3.2. Generation of TDX DTMs by filtering and interpolation

The SRTM, ASTER, ALOS, and TDX DEMs include canopy and
building measurements because electronic and magnetic waves re-
corded by radar or optical sensors cannot penetrate fully through ve-
getation and buildings to reach the ground. Hence, the SRTM, ASTER,
ALOS, and TDX DEMs actually represent DSMs that include the eleva-
tions of non-ground features. The terms DEM and DSM were used in-
terchangeably in this study to keep the DEM terminology used by many
agencies providing the data. To improve the accuracy of mapping storm
surge flooding using these DEMs, non-ground elevations must be re-
moved, especially in low-relief coastal areas. Because of their coarse
horizontal (30m) and vertical resolutions (1m), this is a challenging
task with SRTM, ASTER, and ALOS DEMs. However, the higher spatial
and vertical resolutions of the TDX DEM make it possible to remove
vegetation and building elevations based on elevation changes within a
neighborhood (local window) (Geiß et al., 2015). We used four filtering
methods for airborne LiDAR data, including the elevation threshold
with expanding window (ETEW) filter, the progressive morphological
filter with one dimensional (PM) or two dimensional (PM2D) structure
elements, and the adaptive triangulated irregular network (ATIN) filter
(Axelsson, 2000; Cui et al., 2013; Zhang, 2007; Zhang et al., 2003;
Zhang and Whitman, 2005) to remove non-ground pixels in TDX DEMs.
The horizontal (x and y) and vertical (z) coordinates of LiDAR points
are used by these filters to generate ground measurements. Thus, prior
to filtering, TDX DEMs were converted into points based on the hor-
izontal coordinates and elevations of grid cells using Python (www.
python.org). The parameters for the ETEW method included an initial
square window size of 10m, a slope of 0.07, a window series of 1, 2, 4,
8, and 16 cells for five iterations, and height difference thresholds of
1.4, 2.8, 5.6, 11.2, and 22.4m corresponding to the window series. The
parameters for the ATIN method employed an initial square window
size of 200m, a height difference threshold of 0.4m, and an angle
threshold of 3°. For embarrassingly parallel computation, the dataset
was subdivided into 2000m×2000m tiles with overlap buffers of

K. Zhang, et al. Remote Sensing of Environment 225 (2019) 290–306

293

https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities
http://www.opentopography.org
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html
http://www.python.org
http://www.python.org


200m. The PM method used a cell size of 10m, a window series of 1, 2,
4, and 8 cells, and height difference thresholds of 0.25, 0.5, 1.1, and
1.2 m corresponding to the window series without rotation of raw data.
The PM2D method used a cell size of 10m, a window series of 10, 20,
30, and 40 cells, and height difference thresholds of 3, 6, 12, and 18m
corresponding to the window series without rotation of the raw data.
The details of these filtering parameters can be found in Zhang (2007)
and Zhang and Whitman (2005).

The DTMs were generated by interpolating the ground pixels of the
filtered TDX DEMs, using Empirical Bayesian Kriging (EBK) in ArcGIS.
The EBK method was selected for the interpolation because (1) EBK has
the ability to smooth out the outliers in the filtered pixels, and (2) the
parameters used by EBK are automatically optimized by sub-setting the
large dataset and using a spectrum of semivariograms generated
through an iterative simulation process, instead of using a single
semivariogram as in traditional kriging methods (Krivoruchko, 2012;
Mirzaei and Sakizadeh, 2016; Roberts et al., 2014). The semivariogram
that quantifies the spatial dependence in the filtered pixels is a function
of the distance and direction separating pairs of pixels.

3.3. Elevation accuracy analysis

The vertical errors of the DEMs were quantified by comparing in-
dividual test DEM elevations (yi) and reference LiDAR or GPS elevations
(xi) at sample points (i) using the following metrics (Davis, 2002; Höhle
and Höhle, 2009; Wessel et al., 2018):
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where Δhi is the difference between yi and xi and N is the total number
of samples. NMAD is a nonparametric estimate for SD and is equal to SD
if the difference follows a normal distribution.

The linear regression:
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where εi is the random error following a normal distribution. The R-
squared value of the linear regression equation was calculated by
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where ym is the mean of yi. The p-value, that is the two-sided probability
value of the null hypothesis that the slope of the regression equation is
zero (Davis, 2002), was employed to examine the significance of the
regression parameter. A low p-value (e.g., < 0.01) indicates that the
null hypothesis may be rejected.

For accuracy analysis based on LiDAR measurements, these error
measures were calculated using elevation pairs from 30m ASTER,
SRTM, and ALOS DEMs versus 30m LiDAR DSMs, and elevation pairs
from 12m TDX DEMs and DTMs versus 12m LiDAR DSMs and DTMs,

respectively, for overlapping areas. For accuracy analysis based on GPS
measurements, the mean and standard deviation of the GPS elevations
within a 30m grid cell of ASTER, SRTM, and ALOS DEMs, or within a
12m grid cell of TDX DEMs and DTMs in the overlapping area were
calculated. Error measures were then calculated using elevation pairs
from 30m DEMs versus mean values of associated GPS measurements,
and elevation pairs from 12m DEMs and DTMs versus associated mean
values of GPS measurements. If the number of GPS points within a grid
cell was less than five, the grid cell and associated GPS measurements
were excluded from comparison to ensure sufficient samples within a
grid cell.

3.4. Delineation of potential flood area

The height of short-term floods caused by tides, storm surges and
wave runups reaches about 10m for Category 5 hurricanes, based on
preliminary numerical modeling by the Storm Surge Unit at the
National Hurricane Center. The potential long-term flood height at the
end of the 21st century caused by the worst sea level rise scenario was
estimated to be about 2–3m (Bamber et al., 2009; Sweet et al., 2017).
Therefore, the flood risk along the Hispaniola coast from the combi-
nation of tides, storm surges, wave runups, and sea level rise were ca-
tegorized into high (locations at 0–3m elevation), moderate (3–5m
elevation), low (5–10m elevation), and extremely low (10–15m ele-
vation) risk categories. Since the inundated area for a rise of h in water
level is equivalent to the coastal area below elevation h but above
current sea level (EGM2008) if both sea level and elevation are refer-
enced to the same vertical datum, flood risk areas corresponding to
these categories were derived using a polygon formed by the shoreline
and the contours corresponding to elevation h, following the procedure
developed by Zhang et al. (2011).

In estimating the uncertainty of the flood risk maps generated using
DTMs, it is important to quantify the horizontal position error of con-
tour lines caused by vertical elevation uncertainty. The horizontal er-
rors from TDX DTMs were examined by comparing the TDX and LiDAR
contour lines in the same area, following a procedure used to map
shoreline and beach volume change (Leatherman and Clow, 1983;
Robertson et al., 2018; Zhang and Robertson, 2001). First, an offshore
baseline that was approximately parallel to the contour lines was cre-
ated in ArcGIS. Second, transects perpendicular to the baseline at a
given interval (e.g., 100m) were generated. Third, the distances be-
tween the contour lines and the baseline along transects were calcu-
lated to derive the differences between TDX and LiDAR contour lines
(Fig. 2a).

The derivation of contour line position errors by comparing TDX
and LiDAR contours only works for areas where both data sets exist.
This method cannot be applied in areas where LiDAR data are not
available. An alternative is to apply the elevation error derived by a
comparison between TDX and LiDAR DTMs in overlapping coastal areas
to the remaining coastal areas in Hispaniola, under the assumption that
the elevation error of the remaining area is the same as the error in the
overlapping area. Given a TDX contour (yc), the systematic offset (m),
the random error (σ) of the differences between TDX (yi) and LiDAR
DTM (xi) elevations, and the vertical error (δ) of LiDAR measurements,
the lower (hl) and upper (hu) boundaries of the true contour (hc) are
estimated by:

h y m c c
h y m c c

l c

u c

= +
= + + + (10)

where parameters σ and δ are independent, c is a constant (e.g., 2 or 3),
and σ can be estimated by SD, RMSE, NAMD, or LE90. A quality check
for LiDAR data in the study area is not available. Since the RMSE error
of an airborne LiDAR survey is usually lower than 0.15m (Shan and
Toth, 2008), δ was set to be 0.15m in this study. The flood zone and
associated zones of uncertainty were estimated by the inundated areas
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between the shoreline and hl, h, and hu contours from TDX DTMs, given
a rise of h in water level.

4. Results

4.1. Satellite DEMs and DTMs versus GPS measurements

Comparison of GPS measurements at Pedernales, Samana, and
Sanchez with ASTER DEMs indicated that ME was about 4.83m and
MNB reached 654.4% (Table 1). It is noteworthy that MNB is sensitive
to elevation differences at low elevations, and overestimates or un-
derestimates indicated by MNB are not bounded by 100% as indicated
by Eq. (2). The ASTER DEM elevations were scattered between about 0
to 22m while GPS elevations varied from 0 to 4m (Fig. 3), which im-
plied that ASTER DEM elevations largely overestimated the topographic
elevations at the three locations, resulting in the large SD of 6.96m,
RMSE of 8.44m, and LE90 of 14.29m. Compared to the ASTER DEM
elevations, the scatter of SRTM elevations versus GPS elevations was
reduced, but still quite large, generating an ME of 2.83m and MNB of
277.0%. SD, RMSE, and LE90 of SRTM elevations were 2.58, 3.82, and
5.85m, respectively, less than half of ASTER's values. SD, RMSE, and
LE90 of ALOS elevations were further reduced to 1.87, 2.08, and

3.64m, respectively. These values together with a smaller ME of 0.92m
and an MNB of 90.8% implied that ALOS elevations approximated
Earth's surface elevations better than ASTER and SRTM at the three
sites. With the smallest ME of 0.71m and MNB of 39.4% in combination
with the smallest SD of 1.59m, RMSE of 1.74m, and LE90 of 3.20m,
TDX DEM elevations estimated surface elevations best among the four
data sources.

More TDX versus GPS elevation points were above the 1:1 line than
below it, indicating that there was an offset of TDX elevations (Fig. 3).
This offset existed because the TDX DEMs includes the elevations of
non-ground pixels. Therefore, it is necessary to remove non-ground
pixels from TDX DEMs to produce DTMs. The DTMs derived by filtering
TDX DEMs using the ETEW, ATIN, PM, and PM 2D methods and in-
terpolating identified ground pixels generated a smaller set of SD,
RMSE, and LE90 values in comparison with values for the unfiltered
TDX DEM (Table 1). The scatter plots for DTM versus GPS elevations
showed that the ETEW and PM methods produced less scatter among
data points in comparison with the ATIN and PM2D methods (Fig. 4).
The DTM derived from the PM method generated the smallest SD of
1.03m, RMSE of 1.06m, and LE90 of 1.73m among four DTMs.

ASTER, SRTM, ALOS, and unfiltered TDX DEMs, and TDX DTMs
were compared with GPS measurements along a profile at Samana to

Fig. 2. (a) Baseline, transects across the shoreline, and contours. The interval between two adjacent transects is 100m and for clarity only one of ten consecutive
transects is displayed. The shoreline section around Toussaint Louverture International Airport is enlarged in the imbedded map. (b) The differences between 5m
contours from LiDAR and TDX DTMs along transects. Large contour line differences occur between transects 700 and 720, a marsh area next to the river on the delta
plain.
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illustrate the spatial variation in the differences between satellite and
GPS based elevations (Fig. 5). Between the distances of 0–250m from
shore to inland along the profile, ASTER elevations were much higher
than GPS elevations and the lowest ASTER elevation at 145m along the
profile differed by about 4m from the GPS elevations. Hence, the

application of filter methods to ASTER DEMs would not improve the
estimates much because of large errors in DEM elevations and coarse
horizontal and vertical resolutions. SRTM and ALOS DEM elevations
along the profile were closer to GPS elevations, outperforming ASTER
DEMs. However, over- or underestimates of topographic elevations

Table 1
Error measures. The representative row in the table is explained as follows. The row of “ASTER:GPS” shows the error measures of the differences between ASTER
elevations and mean GPS elevations within ASTER grid cells. The row of “ETEW:GPS” shows the error measures of the differences between the elevations of the
ETEW filtered TDX DEM and mean GPS elevations within TDX grid cells. The row of “ASTER:LiDAR” shows the error measures of the differences between the ASTER
and LiDAR elevations. The row of “ETEW:LiDAR” shows the error measures of the differences between the filtered TDX DEM and LiDAR DTM elevations. The row of
“PM:LiDAR 3m” shows the error measures of the differences between 3m contours from the PM filtered TDX DEM and LiDAR DTM.

Comparison Number of samples ME (m) MD (m) MNB (%) SD (m) RMSE (m) NMAD (m) LE90 (m) R2

ASTER:GPS 95 4.83 3.01 654.4 6.96 8.44 8.33 14.29 0.31
SRTM:GPS 95 2.83 3.00 277.0 2.58 3.82 2.29 5.85 0.00
ALOS:GPS 95 0.92 0.20 90.8 1.87 2.08 1.63 3.64 0.10
TDX:GPS 125 0.71 0.23 39.4 1.59 1.74 0.99 3.20 0.32
ETEW:GPS 125 −0.09 −0.16 −11.3 1.14 1.14 1.21 1.81 0.69
ATIN:GPS 125 0.28 0.08 4.1 1.37 1.39 1.19 2.15 0.62
PM:GPS 125 −0.27 −0.22 −20.2 1.03 1.06 1.06 1.73 0.74
PM2D:GPS 125 0.33 0.10 7.2 1.33 1.37 1.17 2.24 0.61
ASTER:LiDAR 165,624 2.45 2.41 94.5 3.46 4.24 3.42 6.70 0.66
SRTM:LiDAR 165,624 4.18 3.95 89.6 2.38 4.81 2.09 7.16 0.87
ALOS:LiDAR 165,624 4.46 4.17 97.5 2.06 4.91 1.52 6.82 0.90
TDX:LiDAR 1,022,699 1.27 0.69 20.0 1.88 2.27 1.12 3.66 0.92
ETEW:LiDAR 1,022,699 0.76 0.57 12.5 1.47 1.66 0.96 2.51 0.94
ATIN:LiDAR 1,022,699 0.80 0.59 12.8 1.32 1.55 0.94 2.29 0.95
PM:LiDAR 1,022,699 0.60 0.40 8.5 1.16 1.30 0.81 2.02 0.96
PM2D:LiDAR 1,022,699 0.88 0.63 14.3 1.33 1.60 1.03 2.57 0.95
PM:LiDAR 3m 694 −49.2 −20.9 −5.8 104.4 115.3 52.9 172.9 0.99
PM:LiDAR 5m 709 −75.0 −28.4 −6.5 144.5 162.7 48.7 211.1 0.99
PM:LiDAR 10m 720 −59.9 −26.0 −3.3 123.0 136.7 51.4 202.9 1.00
PM:LiDAR 15m 711 −66.4 −29.8 −1.7 115.5 133.2 56.9 232.8 1.00

Fig. 3. Scatter plots of ASTER, SRTM, ALOS, and TDX
DEM elevations versus GPS measurements at
Pedernales, Samana, and Sanchez in the Dominican
Republic. The value of GPS elevation and horizontal
bar of a data point represents the mean and standard
deviation of the GPS elevations within a DEM grid
cell. Note that the ranges of ALOS and TDX DEM
elevations are reduced by half of the ranges of ASTER
and SRTM elevations to show elevation scatteredness
better.
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ranging from 2 to 4m by SRTM and ALOS were observed along the
profile. The TDX DTMs generated by the PM and ETEW methods were
closest to GPS measurements between the distances of 0–250m along
the profile. Note that the elevation change caused by a small pit ad-
jacent to the shoreline as indicated by GPS measurements was not
captured by any of the four DEMs.

4.2. Satellite DEMs and DTMs versus LiDAR measurements

Comparison of satellite DEMs and DTMs with GPS measurements in
three areas adjacent to the shoreline illustrated error measures below
7m elevation (Figs. 3 and 4). Although the accuracy of kinematic GPS
data as the reference was high, the coverage of spatial variation in to-
pography was limited because of the intensive labor and high costs
required to obtain GPS measurements compared to a remote sensing
method. Hence, the LiDAR measurements covering 76 km of shoreline
and 150 km2 coastal areas were used to further examine the accuracy of
satellite DEMs. Only pixels below the 20m contour of the LiDAR DTM
were used to conduct the comparisons, because even the most ag-
gressive estimate of the potential coastal flooding caused by storm
surge and sea level rise within 100 years does not exceed this height.

ASTER DEM generated the largest SD of 3.46m (Table 1), which is
consistent with the distribution of elevation differences between ASTER
and LiDAR (Fig. 6a) and the relatively large scatter of data points for
ASTER versus LiDAR elevations (Fig. 7). However, ME, RMSE, and LE90
of ASTER were smaller than those of SRTM and ALOS (Table 1) because
of large positive offsets of SRTM and ALOS elevations from LiDAR
elevations (Fig. 7). The Q-Q plot showed that the distribution for ele-
vation differences between ASTER and LiDAR approximated a normal

distribution (Fig. 6b), therefore, the values of SD and NAMD were al-
most the same (Table 1). TDX DEM elevations produced the least scatter
(Fig. 7) among the four satellite data sets, leading to the smallest SD of
1.88m, RMSE of 2.27m, and LE90 of 3.66m. The scatter plot for TDX
versus LiDAR in Fig. 7 exhibited a positive offset and the histogram for
the difference between TDX and LiDAR DEM elevations showed a se-
vere skewness toward the positive value (Fig. 6a), far from the normal
distribution as indicated by the Q-Q plot (Fig. 6e). The differences of
SRTM and ALOS elevations versus LiDAR elevations showed less scatter
and lower similarity to a normal distribution than ASTER versus LiDAR
(Fig. 6c and d), but a much higher similarity than TDX versus LiDAR.

The error measures for the differences between LiDAR and TDX
DTM elevations indicated that the ETEW, ATIN, PM, and PM2D
methods improved the accuracy of TDX elevations (Table 1). The PM
filter generated the best result, with a SD of 1.16m, RMSE of 1.30m,
and LE90 of 2.02m, representing a 43% reduction in vertical error
compared to the unfiltered TDX elevation data in terms of RMSEs. The
ME and MNB of the DTM from the PM filter method were 0.60m and
8.5%, a 53% drop in ME and 57% drop in MNB; this indicated that a
large portion of the offset error in unfiltered TDX DEMs was removed by
the filter. The scatter plots for the PM-based DTM elevations versus
LiDAR elevations also showed that the offset of the unfiltered TDX
DEMs with elevations below 15m was removed (Fig. 8). Although
ETEW, ATIN, and PM2D produced larger SD, RMSE, and LE90 values,
these three filters also removed most of the offset below 15m (Fig. 8).
An under-filtering of non-ground features at higher elevations was
evident in Fig. 9, which displays elevation variations of unfiltered and
filtered TDX data along a profile near Port-au-Prince. The dense trees
and buildings on the land surface above 12m were largely removed by

Fig. 4. Scatter plots of DTM elevations from the ETEW, ATIN, PM, and PM2D filters versus GPS measurements at Pedernales, Samana, and Sanchez in the Dominican
Republic.
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Fig. 5. The aerial photograph, GPS points, grid cells of the SRTM DEM (upper panel), and the elevation profile across the GPS measurements (lower panel) at Samana
in the Dominican Republic. The GPS measurements along the profile was generated by projecting the points within a 100m buffer zone to the profile line. The x
coordinate of the profile starts from shore (zero) and extends inland (left side of the aerial photograph).

Fig. 6. (a) The distribution of the elevation differences between the ASTER DEM, SRTM DEM, ALOS DEM, TDX DEMs, PM based DTM, and LiDAR DTM. Q-Q plots for
the differences between (b) ASTER and LiDAR, (c) SRTM and LiDAR, (d) ALOS and LiDAR, (e) TDX and LiDAR, and (f) PM based TDX and LiDAR elevations.
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the filters, but there were varied offsets between TDX and LIDAR DTMs.
The major challenge here was that the pixels of TDX DEMs did not
reach the ground over a large portion of the profile with higher ele-
vations. For example, the TDX DEM data did not capture ground ele-
vations between the distances of 4400 and 5000m as indicated by
unfiltered TDX and LiDAR elevations in Fig. 9, making it difficult for the
filters to derive ground elevations within this interval. It is also note-
worthy that ASTER, SRTM, and ALOS elevations largely over-estimated
the ground elevations under 8m even though there were few non-
ground features in this area, illustrating the poor data quality of ASTER,
SRTM, and ALOS DEMs in areas near the shore. The comparison of
unfiltered and filtered TDX and LiDAR data showed that the filter did
not improve the skewness of elevation differences much (Fig. 6a and f)
or remove all non-ground features in TDX DEMs, producing a DTM that
looks rougher than the DTM from filtered LiDAR data (Fig. 10).

4.3. Comparison of inundation areas from satellite DEMs and DTMs, and
LiDAR DTMs

The inundation areas from ASTER, SRTM, and ALOS DEMs for a
scenario of 3m water level rise differed by>90% from the inundation
area derived from the LiDAR DTM (Table 2). The negative sign of the
difference in percentage in the table indicates that inundation areas
from ASTER, SRTM, and ALOS DEMs greatly underestimated the in-
undation extent. The difference in inundation areas for a scenario of
5m water level was reduced but still quite large, with a range from
−93% to −73%. It is obvious that inundation extent was not depicted
accurately with such large errors (Fig. 11). Under this scenario, the
ASTER DEM produced the largest error, incorrectly projecting almost
no inundation in the coastal area around Port-au-Prince. As the mag-
nitude of water level rise increased, the differences in inundation areas

became reduced (Table 2). The overall performances of ASTER, SRTM,
and ALOS DEMs were poor, and none of the three was consistently
better than the others in terms of the inundation areas for 3, 5, 10, and
15m increases in water level.

The inundation areas from the TDX DTM produced much smaller
errors, ranging from −13% for 3m water level rise to −4% for 15m
water level rise (Table 2). The negative values of the difference per-
centages indicate that the TDX DTM also underestimated the inunda-
tion area as illustrated in Fig. 12. Similar to the variation in the errors of
inundation areas for ASTER, SRTM, and ALOS DEMs, the errors for the
TDX DTM became smaller as the magnitude of water level increased
(Table 2). Errors in the areas of high, moderate, low, and extremely low
risk also decreased as the magnitude of water level rise increased be-
cause the underestimates of lower and upper boundaries of a risk zone
tended to cancel each other out, resulting in small errors for the cal-
culated areas (Table 2). The comparison of TDX and LiDAR inundation
contours for the most landward positions of inundation under hy-
pothetical scenarios showed that the TDX DTM underestimated in-
undation extent, as indicated by MEs of −75.0 to −49.2m and MNBs
of −6.5% to −1.7% (Table 1). The SDs, RMSEs, and LE90s of the
differences in the inundation contours for 3, 5, 10, and 15m water level
rises ranged from 104.4 to 144.5, 115.3–162.7, and 172.9–232.8m. In
contrast to the differences in inundation areas from TDX and LiDAR
DTMs, the differences in the inundation contours did not decline with
an increase in the magnitude of water level rise. As expected, the larger
differences in inundation contours occurred along shoreline sections
with gentle slopes, while smaller differences occurred in shoreline
sections with steep slopes (Fig. 2b).

The error in inundation contours results in uncertainty in the map
for potential flooding given a magnitude of storm surge and sea level
rise. The effect of this error can be estimated using Eq. (10). Since the

Fig. 7. Scatter plots of ASTER, SRTM, ALOS, and TDX DEM elevations versus the LiDAR DSM elevations around Port-au-Prince in Haiti.
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differences between TDX and LiDAR DTMs did not follow a normal
distribution (Fig. 6), the systematic offset (m) was estimated using the
MD value, the random error (σ) was estimated using NAMD, δ was set
to be 0.15m, and c was set to be 2. One example of the seaward and
landward extent attributable to errors between TDX and LiDAR DTMs
for the 5m inundation contour is illustrated in Fig. 12, where the dif-
ference zone between TDX and LiDAR inundation contours was
bracketed by the boundaries of uncertainty.

5. Discussion

5.1. Accuracy analysis

The high accuracy of TDX DEM elevations versus GPS measure-
ments that we observed (RMSE, 1.74m; LE90, 3.20m: Table 1) matches
well with the accuracy assessment of TDX DEM with GPS data at a
global scale (Wessel et al., 2018), who found RMSE of 1.71m and LE90
of 2.59m when TDX DEMs were compared with benchmark GPS
measurements in areas of medium development (Table 4 in Wessel et al.
(2018)). Based on aerial photographs (Fig. 1), the land cover at Ped-
ernales, Samana, and Sanchez GPS sites assessed in our study can be
categorized as areas of medium development. By removing non-ground
features, TDX DTM derived by the PM filter resulted in 39% and 46%
improvements in RMSE and LE90, respectively, indicating that similar
filtering of TDX DEMs should be conducted whenever possible.

The RMSE and LE90 from the comparison of TDX DEM elevations
with LiDAR measurements are 2.27 and 3.66m, respectively, higher
than the RMSE and LE90 from GPS measurements (Table 1). This is to
be expected because the LiDAR measurements cover extensive, 150 km2

areas that are occupied by many types of land cover, including marsh,
forest, crop land, and low to high development. The LE90 value also

agrees with an overall LE90 of 3.49m derived by comparing TDX DEMs
with> 144 million ICESat measurements (Rizzoli et al., 2017). Similar
to the GPS surveyed areas, the TDX DTM from the PM filter improved
the elevation accuracy by 43% and 45% in terms of RMSE and LE90,
respectively.

The inundation polygons depicted by TDX and LiDAR DTMs mat-
ched well spatially (Fig. 12) and the TDX and LiDAR inundation con-
tours for these scenarios differed by distances that averaged< 75m.
Error measures estimated from the coastal area around Port-au-Prince,
Haiti can be used to quantify the flood mapping error using TDX DTMs
for the remaining areas of Hispaniola, under the assumption that the
errors are likely to be similar. This is a reasonable assumption because
the LiDAR surveyed area includes most coastal land cover types in
Hispaniola. Transects of 1700m length along a profile near Port-au-
Prince (Fig. 9) indicated no systematic offset between elevations from
TDX DEM and LiDAR DSM in open coastal areas. Several methods to
map the uncertainty for coastal inundation have been proposed (Gesch,
2009; West et al., 2018). The method used in this study (i.e, Eq. (10))
resembles the method developed by Gesch (2013), except that it also
considers the systematic elevation offset in the filtered TDX DEM.

It is important to conduct error analysis by comparing TDX DEM
elevations with GPS and LiDAR measurements with higher accuracy.
The error measures allowed us to examine whether there was an offset
in TDX DEMs, and to produce lower and upper boundaries for the flood
maps due to elevation uncertainty. Kinematic GPS surveying is a con-
venient way to collect accurate elevation data to verify TDX DEMs. The
survey in this study sampled about 20 elevation points within a
30m×30m square. This method captured the spatial variation in
elevations within a DEM grid cell, but reduced the survey efficiency. It
is probably better to survey the elevations along profiles perpendicular
to contour lines, because sampling points will cover a large range of

Fig. 8. Scatter plots of DTM elevations produced with ETEW, ATIN, PM, and PM2D filters versus the LiDAR DTM elevations around Port-au-Prince in Haiti.
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elevations. The airborne LiDAR technology is more effective due to the
large tracts of data collected, which include areas inaccessible to
ground surveyors. However, the cost and time of LiDAR survey and data
processing often prevent the application of LiDAR in developing
countries.

In contrast to TDX DEM, ASTER, SRTM, and ALOS DEMs produced
larger RMSE and LE90 errors and the performances of these three DEMs
were not consistent. ALOS DEMs achieved a better accuracy than SRTM
and ASTER DEMs in comparison with GPS measurements with eleva-
tions below 7m, while at LiDAR elevations below 20m, ASTER had a
better accuracy due to a smaller offset than SRTM and ALOS DEMs.
ASTER, SRTM, and ALOS DEMs generated larger discrepancies than
TDX DTMs in delineation of inundation areas (Table 2) and contours
(Fig. 11) for 3, 5, 10, and 15m. Similar to elevation accuracy, none of
the three was consistently better than the others in the calculation of
inundation areas.

When ASTER and ALOS DEMs from the analysis of stereoscopic
optical images as well as SRTM and TDX DEMs from radar were com-
pared in pairs, both the ALOS sensor, which generated higher resolution
(2.5 m) images than 15m resolution imagery from ASTER (Abrams
et al., 2010; Tadono et al., 2014), and the TDX sensors, with a longer
radar baseline from two tandem satellites than the baseline from a
single antenna in the space shuttle (Farr et al., 2007; Gruber et al.,
2012), improve the elevation accuracy of the data. When compared on
the basis of GPS measurements, both ALOS versus ASTER DEMs and
TDX versus SRTM DEMs showed a better response to GPS elevation
changes (Fig. 3). The comparison of DEMs with LiDAR measurements
showed a similar pattern (Fig. 7), although ALOS DEM generated a

larger RMSE value than ASTER DEM due to an offset. This offset can be
removed if sufficient elevation measurements (e.g. from GPS) with
higher accuracy at sample sites are available.

Numerous studies in developing countries have employed open
source ASTER and SRTM DEMs to map the potential flooding that will
result from storm surges and sea level rise on a local scale (Aleem and
Aina, 2014; Demirkesen et al., 2007; Ho et al., 2010; Kuleli, 2010;
Pramanik et al., 2015; Refaat and Eldeberky, 2016). On a global scale,
most studies that document potential flood risk in coastal cities or zones
have used SRTM DEMs as well (Hallegatte et al., 2013; Hinkel et al.,
2014; McGranahan et al., 2007). Such studies suffer the following
common problems: (1) most of them did not conduct accuracy analyses,
and (2) SRTM and ASTER data grossly underestimated inundation
areas, especially for coastal lands below 5m elevation. As a result, the
impacted population, property, and facilities in flood-vulnerable areas
were also underestimated. In the coastal area around Port-au-Prince,
this underestimate was remarkable (Table 2 and Fig. 11), as the in-
undation areas below 5m from SRTM and ASTER DEMs were 5 and 15
times smaller, respectively, in comparison with the LiDAR-based in-
undation area. Similar underestimates of inundation areas by SRTM and
ASTER DEMs were also found on the local scale in Nigeria (van de
Sande et al., 2012), Indonesia (Griffin et al., 2015), Poland (Walczak
et al., 2016), and England (Yunus et al., 2016), and on the national level
in the U.S. (Kulp and Strauss, 2016). One could argue that the RMSE in
ASTER and SRTM DEMs can be improved by removing offsets through
comparison of DEMs with reference data of higher accuracy. Un-
fortunately, the offsets may not be systematic as indicated by the scatter
plot between ASTER and LiDAR DEMs in Fig. 7. Even if the offsets seem

Fig. 9. Aerial photograph (upper panel) and the elevation profile (lower panel) near Port-au-Prince in Haiti. The profile starts from a location close to shore with an x
coordinate of zero and extends inland.
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systematic, as indicated by scatter plots for SRTM and ALOS versus
LiDAR, there is no guarantee that the offsets estimated at Port-au-Prince
could be applied to places other than the study area.

In addition, inconsistent performances by ASTER, SRTM, and ALOS

DEMs in depicting inundation areas for low and high water level rise
scenarios makes it difficult to select which of the three is more suitable
for mapping potential coastal inundation. By contrast, the differences in
estimated inundation areas around Port-au-Prince from TDX and LiDAR

Fig. 10. TDX DEM, LiDAR DSM, TDX DTM, and LiDAR DTM for the area near Port-au-Prince in Haiti.

Table 2
Inundation areas generated from ASTER, SRTM, and ALOS DEMs, and TDX and LiDAR DTMs for hypothetical water level rise (WLR) scenarios of 3, 5, 10, and 15m.
The TDX DTM was generated by the PM filter. The differences in percentage between the areas from ASTER, SRTM, ALOS, and TDX, and the area from LiDAR were
listed in parentheses.

WLR Scenarios (m) ASTER in km2(%) SRTM in km2(%) ALOS in km2(%) TDX in km2(%) LiDAR (km2) Risk class Risk area (TDX/LiDAR, km2/km2/(%))

3 0.7 (−98) 2.1 (−93) 1.6 (−95) 26.0 (−13) 30.0 High 26.0/30.0 (−13)
5 3.3 (−93) 11.0 (−73) 9.0 (−82) 44.7 (−11) 50.0 Moderate 18.7/20.0 (−7)
10 68.7 (−22) 56.9 (−35) 55.1 (−38) 83.5 (−5) 88.2 Low 38.8/38.2 (2)
15 111.3 (−7) 91.2 (−24) 90.9 (−24) 114.9 (−4) 119.8 Extremely low 31.4/31.6 (−1)
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DTMs show that the TDX DTM reasonably approximates LiDAR DTM
for the inundation areas below 3m and 5m as well as for inundation
areas below 10 and 15m (Table 2), indicating that TDX DTMs, though
not as accurate as LiDAR DTMs, are practical substitutes for mapping
coastal inundation. Hence, we strongly recommend utilizing TDX DEMs
for global analysis of sea level rise impacts, and for local analysis in
developing countries where LiDAR is not economically feasible, be-
cause the TDX DEM is the most accurate global DEM to date. It is no-
teworthy that the RMSE value of 1m for TDX DTMs in the study area is

much larger than the RMSE of LiDAR DTMs. The confidence level for
mapping minor floods of< 1m using TDX DEMs is low due to this
error. Therefore, caution should be taken when using TDX DTMs to map
potential inundation risk solely owing to sea level rise, which, based on
the IPCC projection, is about 1m by 2100 for the worst-case scenario
(Stocker et al., 2013). Gesch (2018) drew a similar conclusion by as-
sessing the adequacy of TDX DEMs for mapping sea level rise inunda-
tion along the U.S. coasts. Another hurdle for extensive application of
TDX DEMs to mapping coastal flooding in developing countries is that

Fig. 11. The inundation areas derived from ASTER DEM, SRTM DEM, ALOS DEM and LiDAR DTM for a 5m scenario of water level rise.

Fig. 12. Inundation areas derived from the PM-filtered TDX DTM versus those from the LiDAR DTM for 3, 5, and 10m scenarios of water level rises. The lower and
upper boundaries for the 5m inundation area estimated using the uncertainty in the TDX data are also displayed.
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TDX 12m DEMs are not freely available, although DLR released TDX
90m DEMs to the public in October 2018. Comparison of TDX 12m and
90m DEMs at Port-au-Prince, Haiti showed that 90m DEMs captured
major elevation change patterns, but smoothed out many local eleva-
tion variations because of resolution reduction. Due to this smoothing
effect, the filtering of 90m DEMs probably provides little improvement
of DTM accuracy, thereby greatly increasing uncertainty in depicting
inundation zones.

5.2. Filtering of TDX DEMs

It has been demonstrated that the DTMs generated by filtering and
interpolating TDX DEMs resulted in approximately 40% improvement
in estimates of ground elevation. Therefore, filtering methods are
needed if TDX DEMs are to be used to map coastal flood hazards ac-
curately. Among the four tested filtering methods, the PM filter using a
one-dimensional structure element generated the best results because
this filter effectively preserved river banks, low coastal cliffs, and gently
sloping terrain features such as floodplains within the study area
(Zhang et al., 2003; Zhang and Whitman, 2005). By contrast, the ETEW
and ATIN methods incorrectly removed ground pixels bordering river
banks, as well as low coastal cliffs where sharp elevation changes oc-
curred. Likewise, the PM2D filter is less effective in retaining geo-
morphic features compared to the PM filter, due to its use of a two-
dimensional square or circular structure element.

The filtering methods for LiDAR measurements can either be di-
rectly applied to the TDX DEMs (this study) or modified to fit TDX
DEMs (Geiß et al., 2015; Schreyer et al., 2016) because these filters are
based on a similar assumption for separation of ground and non-ground
pixels. The assumption is that changes in the elevations of ground pixels
are gradual and spatially correlated within a local window, while
changes in elevations between ground and non-ground features are
abrupt and poorly correlated. However, due to footprint sizes and data
point density, TDX and LiDAR data differ remarkably in terms of their
likelihood of penetrating through vegetation. LiDAR can reach the
ground even in dense coastal forests such as mangroves and tropical
hardwoods because of its small footprint size and high spatial mea-
surement density (Zhang et al., 2008). By contrast, TDX measurements
from the X-band radar wave cannot penetrate through dense coastal
forests to reach the ground, making it impractical to separate ground
elevations from non-ground elevations in these types of land cover. In
heavily-built metropolitan areas, where streets are not much wider than
the 12m spatial resolution of TDX DEMs, shadow effects and the mixing
of different objects in a TDX DEM pixel also prevent consistent ground
measurements. In medium-developed and sparse or patchily vegetated
areas, ground and non-ground features are generally separable in TDX
DEMs (Rossi and Gernhardt, 2013; Schreyer and Lakes, 2016), and it is
in such landscapes that TDX DEMs can provide reliable DTMs for
mapping flood impacts.

Even in medium-developed or patchily vegetated areas, the im-
provement in identification of ground pixels by modifying the existing
filtering method to fit the characteristics of TDX DEMs deserves further
study. For example, the TDX sensor did not capture the ground mea-
surements between the distances 4400 and 5000m along a profile near
Port-au-Prince (Fig. 9), resulting in an overestimate of ground eleva-
tions in the filtered data. This overestimate caused corresponding un-
derestimates of the potential flood areas shown in Fig. 12. A possible
strategy to handle this large spatial gap in ground measurements is to
select high quality, well separated ground pixels from the TDX DEMs as
seed points in the first step of forming the initial ground pixel set and
generating an initial ground surface by interpolating ground pixels. The
next step would be to iteratively search the candidate pixels and add
candidates to the ground set by comparing the distances from candidate
pixels to ground surface. Manual editing of automatically selected seed
pixels may be needed to ensure that the seeds are reliable because the
effect of the seed pixels is magnified in adding more ground pixels

through an iterative process (Zhao et al., 2016). The land cover data,
especially from satellite platforms such as Sentinel that collect images
with a spatial resolution similar to TDX DEMs, should be incorporated
into the filtering process for selecting seed ground pixels and de-
termining filtering parameters.

6. Conclusions

The elevation accuracy of ASTER, SRTM, ALOS, and TDX DEMs for
Hispaniola were examined against> 2000 RTK GPS measurements in
the Dominican Republic and 150 km2 LiDAR data in Haiti to determine
if these DEMs are appropriate for mapping coastal flood risk. The
comparison between DEM elevations and GPS measurements below 7m
elevations showed that the TDX DEMs achieved the best accuracy,
generating the smallest SD of 1.59m, RMSE of 1.74m, and LE90 of
3.20m. ASTER DEMs had the lowest accuracy, generating the largest
SD of 6.96m, RMSE of 8.44m, and LE90 of 14.29m, while SRTM and
ALOS DEMs were intermediate in accuracy with 2.58 and 1.87m SDs,
3.82 and 2.08m RMSEs, and 5.58 and 3.64m LE90s, respectively. The
offsets generated by non-ground features in TDX DEMs were largely
removed by the ETEW, ATIN, PM, and PM2D filters. The PM filter
produced the best results, reducing SD to 1.03m, RMSE to 1.06m, and
LE90 to 1.73m, making 39%–46% improvement over unfiltered data.

The comparison between DEM elevations and LiDAR measurements
below 20m indicated a similar pattern in accuracy from DEMs versus
GPS measurements. TDX DEMs had the best accuracy, generating the
smallest SD of 1.88m, RMSE of 2.27m, and LE90 of 3.66m. However,
SRTM DEMs produced the largest errors, with RMSE of 4.81m, and
LE90 of 7.16m due to an offset in the data, while ASTER and ALOS
DEMs generated slightly lower errors than SRTM DEMs. The error
measures from DEM versus LiDAR elevations were larger than the error
measures from DEM versus GPS elevations because LiDAR measure-
ments covered a large area of 150 km2, where there were multiple types
of land cover including marsh, forest, crop land, and low to high de-
velopment. It is better to estimate the statistical parameters for eleva-
tion differences using MD and NMAD than using ME and SD because,
except for ASTER, the differences between satellite-derived and LiDAR
elevations did not follow a normal distribution. The comparison of
DTMs from the ETEW, ATIN, PM, and PM2D filters showed that the PM
filter produced the best result, with a SD of 1.16m, RMSE of 1.30m,
and LE90 of 2.02m, resulting in a 43% improvement in RMSE after
filtering.

The inundation areas from the TDX DTM for scenarios of 3, 5, 10,
and 15m water level rise produced errors between −13% and −4%
compared to the inundation areas from LiDAR DTM. The error in esti-
mates of inundated areas decreased as the magnitude of water level rise
increased, because the area of inundation increased as water level rose,
but the error of the inundation edge did not decrease. The high, mod-
erate, low, and extremely low risk zones derived from TDX and LiDAR
DTMs differed by −13%, −7%, 2%, and −1%, respectively, for a
150 km2 area with elevations below 20m. The TDX DTM under-
estimated the inundation extent as indicated by MEs of −75.0 to
−49.2m and SDs, RSMEs, and LE90s of the differences in inundation
extent for 3, 5, 10, and 15m water level rise ranged from 104.4 to
144.5, 115.3–162.7, and 172.9–232.8m, respectively. Therefore, TDX
DTMs provide an effective approximation of LiDAR DTMs for coastal
flood mapping in the area where LiDAR data are not available. By
contrast, the inundation areas from ASTER, SRTM, and ALOS DEMs for
3 and 5m water level rise scenarios had −98% to −73% of differences
compared to the inundation areas from the LiDAR DTM. The inundation
areas below 5m from SRTM and ASTER DEMs were 5 and 15 times
smaller than the inundated area based on LiDAR. Among ASTER, SRTM,
and ALOS DEMs, no single data source consistently performed the best
in defining inundation areas for 3, 5, 10, and 15m scenarios of water
level rise. We strongly recommend that TDX DEMs be utilized to con-
duct both global and local analysis of sea level and storm surge impacts
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in developing countries.
The DTMs generated by filtering and interpolating TDX DEMs im-

proved the accuracy of ground elevations by about 40% along the coast
near Port-au-Prince, Haiti, thereby greatly reducing the uncertainty in
mapping coastal inundation caused by sea level rise and storm surges.
Therefore, filtering methods must be applied to TDX DEMs to derive
DTMs for accurately delineating coastal flood hazard zones. However,
the effectiveness of filtering is limited by the spatial resolution of TDX
DEMs for locations where dense vegetation and buildings prevent radar
waves from reaching the ground. Though filtering methods employed in
this study worked well for medium-developed or patchily vegetated
areas, the existing filters need to be improved, or a new filter that fits
the characteristics of TDX DEMs needs to be developed to generate
better DTMs in the future.
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